Divide & Conquer - SRQ
Authors: Benjamin Qi, Andi Qu
Using Divide & Conquer to answer offline or online range queries on a static array.
Static Array Queries
Focus Problem – try your best to solve this problem before continuing!
Given a static array , you want to answer queries in the form
where denotes an associative operation.
In a previous module, it was shown that we can
get time queries with time preprocessing
when denotes min
. But how do we generalize to other associative
operations?
We can use divide & conquer to answer queries offline in time or online in .
Offline Queries
Suppose that all queries satisfy (initially, and ). Letting , we can compute
for all and
for each . Then the answer for all queries satisfying is simply due to the associativity condition. After that, we recurse on all query intervals completely contained within and independently.
The code below should work if min
is replaced by any associative
operation.
Warning!
Be careful to combine elements in the appropriate order if the operation is not commutative.
Solution - RMQ
int n, q, A[MX], B[MX];vi x, ans;int lef[MX], rig[MX];void divi(int l, int r, vi v) {if (!sz(v)) return;if (l == r) {trav(_, v) ans[_] = x[l];return;}
Online Queries
We do the same thing as above, except we store all computes values of lef
and
rig
within a 2D array using memory, similarly as sparse
table.
Resources | ||||
---|---|---|---|---|
Benq | implementation |
Solution - RMQ
In the code below, dat
performs the roles that both lef
and rig
do in the
previous solution. Let comb(l,r)
equal
. For example, if and we
only consider levels and then we get
dat[0][i]=comb(i,9)
fori
in[0,9]
dat[0][i]=comb(10,i)
fori
in[10,19]
dat[1][i]=comb(i,4)
fori
in[0,4]
dat[1][i]=comb(5,i)
fori
in[5,9]
dat[1][i]=comb(i,14)
fori
in[10,14]
dat[1][i]=comb(15,i)
fori
in[15,19]
mask[0..4]=0
mask[5..9]=2
mask[10..14]=1
mask[15..19]=3
Examples of queries:
- To query
comb(0,16)
we first count the number of trailing zeroes inmask[0]
XORmask[16]
, which is0
. So our answer ismin(dat[0][0],dat[0][16])
. - To query
comb(12,18)
we first count the number of trailing zeroes inmask[12]
XORmask[18]
, which is1
. So our answer ismin(dat[1][12],dat[1][18])
.
int n, q;vi x, ans;int dat[18][MX], mask[MX]; // 18 = ceil(log2(n))void divi(int l, int r, int lev) { // generate dat and maskif (l == r) return;int m = (l + r) / 2;dat[lev][m] = x[m];ROF(i, l, m) dat[lev][i] = min(x[i], dat[lev][i + 1]);
Optional: Faster Preprocessing
A data structure known as sqrt-tree can speed up preprocessing time and memory to .
Problems
Status | Source | Problem Name | Difficulty | Tags | |
---|---|---|---|---|---|
JOI | Easy | ||||
CC | Easy | ||||
Baltic OI | Normal | ||||
DMOPC | Normal | ||||
NOI | Normal | Show TagsD&C, DP, Knapsack, SRQ | |||
Platinum | Hard | Show TagsD&C, Matrix | |||
CF | Hard | Show TagsWavelet |
Module Progress:
Join the USACO Forum!
Stuck on a problem, or don't understand a module? Join the USACO Forum and get help from other competitive programmers!